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ABSTRACT. The author extends earlier results to the
case of the rotation motion of a solid. The system investi-
gated consists of a solid with a fixed point in the center
of gravity. Axes of three homogeneous, symmetrical, engine-
rotated flywheels lie along the principal central axes of
inertia of the fixed point.

Several authors [1-3] have investigated the problem of the stabilization
of the equilibrium position of a solid with a fixed point by means of fly-
wheels (gyrostat) coupled to the solid. The author of [2] found the optimal
flywheel control law which provides the extinguishing of rotating motions of
the fundamental solid. The established control achieved the shift of the
solid to another equilibrium configuration (from the initial one), i.e.,

[11%

the initial equilibrium configuration became asymptotically stable with respect

to velocities, as well as with respect to the coordinates. Both solutions
indicated present examples of the analytical design of control systems [4-7].
The present work is an extension of the previous investigations [3] to the
case of the rotating motion of a solid.

1. Statement of the Problem. Initial Motion Equations. The mechanical
system under investigation (gyrostat) consists of a solid with a fixed point
in the center of gravity; axes of three homogeneous symmetrical flywheels,
rotated by engines, lie along the principal central axes of inertia of the
fixed point. We shall introduce two systems of coordinates with the initial
point in the fixed point 0: the fixed point OXl X2 X3 and the moving point

Oxl X, X3, the axes of which are directed along the axes of the flywheels.

Maintaining the former designations [3], we write the equation of motion of
the system in the form of three dynamic Euler-Volterra equations

Cipy + (C3— Cs) paps + polls — pslly + Hy =0 auw) (1.1)
(fl‘l = Iiwi' i = '1, 2, 3) .
nine kinematic Poisson equations

Ot Patlis— 3ot =0 ) (=1, 2, 3) (1.2)

*Numbers given in the margin indicate pagination in original foreign text.
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and three equations of the rotating motions of flywheels

L (0] + py =u; (=123 (1.3)
We shall restrict ourselves to the case of the symmetric gyrostat (Cl = C2 =
= C) and change over to new variables by introducing a new system of axes of the
coordinates Y1 Yo Y3 instead of x X, X3, a8 it is done in investigations of

the rotating motions of a gyrosco;e [8]. The axis Y3 coincides with the axis
of free rotation of a gyrostat X35 and the axes vy and Yy lie in the equatorial
plane of the gyrostat Xqs and are not involved in the natural rotation ¢,
Studying the Euler-Krylov angles 6,y,¢, it is possible to direct the axis vy
along the node line for example. The direction cosines between the axes
X X, X3 and Yy ¥y ¥4 are designated by Bik(i, k=1,2,3).

The change over from the variables P; to the new variables 9y is made by

the projections of the instantaneous angular velocity of the coordinate system
Yy ¥y ¥y om its axis. The vector q {ql, qys q3} represents the angular velocity

of following. We have
P1=¢,€05¢Q 4 ¢38inQ, p,= —7;5i0p + ¢;¢05¢, P3=g+¢

Equations (1.1) - (1.3) are rewritten with the new variables 4 > B

The first equation in (1.1) is multiplied by cos ¢, and the second by -sin

¢ and they are added, then the first equation is multiplied by sin ¢, and the
second by cos ¢ and they are again added; the third equation in (1.1) is re-
tained in its original form. After simple transformations, we obtain the
following system of equations:

Cqy + (€3 — O)qaq5 + Co9'qy -+ 7:Gs — ¢5G, + G, = 0
Cay + (€ —Coa10s — Co9'qy + 4561 — ¢,G3 + G, =0 (1.4)
Cilgs +9) + ¢,G, — 7.6, + G =0

where
Gy = Hycos ¢ — H,sing, G, = H;sing -+ Hycos9, G;=Hy (1.5)
Performing analogous transformations with the equations (1.3) with the
assumption that Il = I2 = I, we obtain the system of equations
G+ Igr + (Go+ Iae =wy, Gy +1 g — (G1+1g) @ =w, (1.6)

Gy + I3 (g5 + @) =ws
where

W, = U, COSQ — Uy SINQ, Wy = U;sinQ + U3 COsSQP, Wz = U (1.7)

ik* /12



The equation system (1.2) takes the form
B @B —gBa =0 (=123 (1.8)

The equations (1.4) and (1.8) permit a particular solution corresponding to

the uniform rotation of a gyrostat with an angular velocity w around a fixed

axis X3

=0, g¢=0, Bik={é' 2::11: Gi=G; =0, G;=0G;°

w; =0 (i k=1,2, 3)

(1.9)

In order to exclude the kinetic moments G, from the equations (1.6), use

is made of the law of the conservation of the moment of momentum of a gyrostat
in the projections on the axis Xl X2 X3

(Cqy + GIBu + (Cga + GIBia + [Co(gs + @) + Glpis = hi = const  (1,10)
! (i=112,3)

\

which corresponds to the three integral equations (1.5).

The quantity Gi is determined from Equation (1.10) and substituted in

Equation (1.6), taking Equation (1.8) into consideration. Then, after trans-
formations, we obtain the system of three equations which does not contain Gi

C—Dg'=—(C—1) g9+ (Q3+q).)zhiBiZ'—Q2Z|hiBi3""w1
'(C_I) @' =—C~1)g:9"— (g2 + ‘P')ZhiBu + QIZhiBw_ we (1. (1.1
(Ca—1I3) (g + @) = QZZhiBﬂ"‘ (hZhiBiz—ws

Here and later the summation is performed from 1 to 3 according to the
corresponding subscript.

For the investigated stationary motion (1.9) the constants are equal to

hlo = hzo = 0, h3f) = C;;(D + G3°

Thus, the gyrostat motion is completely described by the twelve equations
in (1.8) and (1.11). The phase coordinates of the system are q;» Bik (i, k =

= 1,2,3); however, only six of them are independent, since the direction cosines /13
Bik are coupled by six geometrical relations

Lo, 1, k=1
Dbubi={ g pzs Oni=1,29 (1.12)

which may be viewed as integrals of the equations (1.8).



2. Solution to the Stabilization Problem. In order to study the stability
(1.9) with respect to 43> 9ys 43 * 9, Bik (i, k = 1.2.3) an equation of per-

turbed motion is composed, retaining for the perturbations the designations
of the initial variables. The constants hi will designate the initial pertur-

bations. In this case, use is made of the 'shortened" system of perturbed
motion equations [3], which is the totality of the complete equations (1.8)
and the system of the first approximation (1.11), since from the asymptotic
stability of motion (1.9), in virtue of the "shortened" system of equations,
ensues the asymptotic stability (1.9), in virtue of the complete system

of equations (1.8) and (1.11). The "shortened" system of equations has the
form

0= hiaGs — (s + @) g - © EhliBiz + v

(2.1)
qz' =' (hl3 + (D) q,— h].1q3 — O Z hliBil —I— Vo
i
05 = ha1q2a — hgaqs + v
Lod3gs . d dpBy

. _Sr = Bii (i=1, 2, 3), —5)—;3 =— [V +Bl21 78:—7 = Q2 + Bl31 (123)

rae . ) 2)
hy = hy . P h30+h3_ ( .
C__I"—hlis Cs— 13 —hsi (l—i, 2)' T '—_hm

<C_])vl= _wl+mh27 (C_I)vz":t—U)g—-(Dhl, (03—13)?)3:——11)3

By =gsBa—gafis (=123 aw (2.3)

Here the problem consists in the following: to determine the functions v,
of phase coordinates so that the zeroth solution

=0, Byx=0 (i, k=123 (2.4)

will be asymptotically stable and, furthermore, that the condition of the
minimum of the integral is satisfied
' oo

Sg(qh qas 43, Blly s e vy B33a Vi, Vg, 03) dt

0

where & 1is a certain positive function which will be found in the course of
the solution of the problem. A priori only the structure of  is defined; it
is assumed that

Q="Fi(q1, @2 q3,) + Fa(Bur, .-+, Bsa) ‘f‘ Zniviz -+

+ A(qy g2 93 BL1,1-'.., Bas) v (2.5)

here

Filq, @, @)= Zeik‘h’]k
ik




It should be borne in mind that corresponding restrictions will be imposed

on the coefficients eIk (e, > 0), n, >0 henceforth; the function F2 is to

be determined, A denotes the possible terms of an order higher than the second. [l4
The function Fl should be the positive definite quadratic form of a positive

definite quadratic form Bik (i, k= 1,2,3).
In order to solve the problem posed of the analytic design of control
systems, the same as was done above, use is made of the fundamental theorem

of the second method Lyapunov used in the investigation of optimal stabilization
problems [9]. According to the theorem, the optimal control vi° and the

optimal Lyapunov function V° satisfy the following system of four equations in
partial derivatives of the first order:

ave ove
E@‘,‘(Qi*%‘vio) +26iqi+Z;T,k‘Bik+
i i i ik Tt

o (2.6)
4+ Q(q1, g2, 93 Buy .-y Basy 1% 0%, 25°) =0

6V_+2nivi°=0 (1:1, 2, 3)
9g;

Here i )
Q1= h1ags — (h1a 4 ©) gz + © N hyBie, Qa2 = (hus + 0) @1 — hi1gs —
i
- E haiBir, Q3 = ha1qs — hsaqy, C 6= ggfs—: — —;gg- (123) 2.7)
Since  aye .
v;° = T (i=1,2,3)

(2.8)

then for the function V° one nonlinear equation is obtained in partial deriva-
tives of the first order

1 [foVo\2 ov° ove
_247‘(5&:)‘+‘Zmoi+;6iQi+§m‘Bik+ (2.9)
+ Fi(q1, G2y Gs) - Fa(Baay -« <, Bsa) + A(q1s G20 93, Bizy - ., Bas) =0

On the basis of Equation (1.12) the variables B,

ik are coupled by six rela-
tionships (the integrals of Equation (2.2))

“(Dkl =B+ B + 2 BriBui=0 (b, 1=1,2,3; kL) (2.10)

The Lyapunov function is sought in the form of a quadratic configuration
with undetermined coefficients [3]

Here | 2V° = 2@, + Zikimﬁ



0Dy = — 2 N kfy + D mugd + 201 2% 2B+ 202 %bikﬂik +
< i e Ak t )
D odm2gs Qtuba >0 m >0 &2 (2.11)
T I
Consequently, By TR ' e
ove a_‘f:—.- A A+ D baBik, -ar=m gs + ) cuBi
:’JE = miq, + i‘zka{kﬂ,k, oy meqs = ,,Zk {kBik dqs - 343 o N (2. 12)

Substituting Equation (2.11) in Equation (2.9), an algebraic equation system
is obtained which couples the coefficients of the functions V° and

d'ng + @3 — Qgy = €11, "Ny - bgy — byg = ey, dgPng 0 — €y = ey
(Byz + @) (my — mg) — @15 + ag; — byy + byy = 2¢;4
—higmy + Rgomg — aa1 + a1y — €35 -+ 3 = 254 (2.13)
hygng — hgig — by ++ by, — €13 + €3 = 2ey
(dy=my/2n;; i=1, 2, 3) . ‘}

The remaining equations are divided into nine subsystems, linear with
respect to a0 bik’ €y each of which contains three coefficients correspond-

ing to the identical subscripts i, k = 1,2,3. All the subsystems have the same
determinant

' T o
—d, s -+ o0 —hy [
A=|—(lus+ 0) —d; Jegq \ (2.14)
lire — I — d

and the right hand terms include components containing  and the parameters
ki and m, .

With sufficiently great di the determinant A 1is deliberately not equal

K’ Pk S
form of the functions hik and w. The following designations are introduced:

to zero and each subsystem has a single solution for a; K? in the

Cdydy + hyhgy = Ay —dg (Ry - ©) — Rydgy = My |

) —doltyy - Dy (Byg - ©) = Ay |

dy (hyg + ©) — hyghy; = Ay, dids + hyphyy = Ay f
—dihyy — hgo (hyg + @) = Ayg - 1’

dohyy + By (s + ©) = Agyy dyhyy — hyp (R + @) = Ay
dydy+ (s + 0)® = Agg - ‘

1/ A=1p \‘

Then, the indicated solutions will be written as follows:

A5



ayy = PMaohy;0hy,, by = Wmghy@hy,, €11 = — WMohy0hg,

ayy = P (kihyy — mihy0hg) Ay = — P (khyy + moh0h,)
b1 = 1 (—kihy + mibj oy, . by Sl (Fohos ~+ mahi0hy,)
12 = W (kyhgs — myhy0hy)), ‘321 = —n (k Asg = mohyshgy) ,
a3 = pkyhyg, bis = — plhygy, €13 = PhjhAg, \
@y = — UMby 0hi, byy = pmih0hg, Coa = — Pmihy,0hg, |
Ay = Pkghyy, bas = — phhy,, Co3 = phyhy, J (2.15)
ag; = — p (k3 + muhi30)h,, agy = —p (ks + mihym)h; ‘
b3y = p (k3 + mahy30)Ag,, by = p (k3 + muh0) Ay “
€31 = — W (k3 -+ mghyz0)A,,, C3p = — W (kg + mihy0)Ag; ‘)

g3 = bgy = ¢35 = O

It follows from the expressions (2.13) - (2.15) that at sufficiently large

di the functions V° and F1 are positive definite. The function F2 consists

of the fundamental function F_* and the supplementary function F_ ** of the

2 2

quadratic forms

Fa* = 7:—11 (2 a”‘B”‘) + i (Z biBix )2.‘1" 73‘1; (Zk CixBin )2
F** = 2 hnpu) (Z ikBik) — 0 (2 hliBiZ) (21‘,‘ Qix Bik) (2.16)
Co i.k; i i .

Since the nine variables of Bk are coupled by the six relationships (2.10)
the form of the function Fz* with sufficiently large di may be made positive
definite [3].

The form F2** is alternating., Therefore, in order for the function
F-.: — Fz* - Fz**

to be positive definite, it is necessary to introduce an upper boundary on the

coefficients of the form Fz** in a corresponding manner., This will lead to

the inequalities which limit the initial moment of momentum of the gyrostat,
h3°, and the initial perturbations, hi' The inequalities indicated will be

established below.

The terms greater than the second order A should be taken in the form

' ; (2.17)
A(qys 920 G5, Bina o v vy Bag) = 2 (n@ix + 92bix + qacix) Bix ‘

16



Thus, it has been established that the motion (2.4) is stabilized by means
of control (2.8), (2.12), and (2.15), if: 1) the forms of V°® and F2 are posi-

tive definite; 2) the inequality A # 0 is valid; 3) the initial moment of
momen tum h3°, and the region of the initial perturbations, hi’ are selected

from the fixed-sign configurations of the form F2. The lower boundary of
mi/Zni can be calculated from these conditions with the fixed parameters of

k, and m, and given h, numbers.
i i ik

In this case, the control found proves to be optimal in the sense of the
minimum of the integral of the function @ (2.5), (2.13) - (2.17).

Returning to former designations, according to (1.7) and (2.3), the authors
obtain the following analytical expressions of the control moments of the
engines, providing for the optimal stabilization of the stationary motion of a
gyrostat (1.9):

ui® (t, ¢, B) = 0 (kg cos ot — hy sinwt) + (C — 1) [dﬂh cos ot - dyqs sin ot +
+ 2_,171' (127‘ aikBik) cos ot +‘ 2%;; (121‘ bikﬁik);.sin (Ot] ) ) ‘
u® (t, ¢, B)=— @ (ke sin ot + hycoswt) 4- (C.—I) [— dlq; sin ot + (2.18)

1 . 1
-+ dgflz cos ot — —271‘ (% qikﬁik> sin i + m (?}(,bikBik) COos (Dt] ‘ .

’

o
us° (¢, ¢,8) = (Cs— L) (das + 5 20 cuBi)

i,k

The optimal control (2.18) is externally linear with respect to the pertur-
bations of the velocities, 9y the perturbations of the coordinates Bik’ and

the initial perturbations, hi’ with periodic coefficients. However, not all

the terms included in the functions (2.18) have the same order of smallness,

since the coefficients a0 bik’ and i according to (2.15), are composed

of terms, some of which are finite quantities, and others have first, second,
and third orders of smallness according to the initial perturbations of hi'

Thus, if 9 Bik hi are considered as quantities of one order, the control
found will contain terms of the first, second, third, and fourth orders of
smallness, i.e., they are actually nonlinear.

The expressions (2.18) indicate that in order to realize the control found
it is necessary to have devices which measure the initial perturbationms, hi’
and the phase coordinates of the solid, 4 Bik' Since in real conditions

the initial perturbations are of a random nature, it is expedient to present
the solution to the problem in the probabilistic formulation, viewing the
initial perturbations as certain random quantities with unknown probabilistic



characteristics.

3. shift to Independent Variables. Let us change over from the dependent /17
variables Bik to the independent variables, i.e., the Krylov angles 0 and ¥

plotting the directing cosines ¢ = 0 in the table [10]. Then the perturbation
Bik is expressed by means of the perturbation of the angles 6 and ¥ as follows:

|

3‘2’1.’::—531:11)’*'---1 632:‘:—ﬁ23=0+""ﬁ21=0‘; (3.1

The remaining Bik start with the terms of the second order of smallness. The
function F2 will take the form
1 2 2 ! 2
Foy (0, §) = App? 4 24100, A,0° 4 i [(c13— ca1) P + (c3a — €23) 0]+ ...
where )

(ais — ‘131)'z + A (bm — b.n)2 — hi0 (bla —_ bal)

/Ulz

! 1

S S
1 1

4, = i (ass — 023)2 -+ e (032 — bzs)2 — h130 (@32 — azs) (3.2)

1
4 13 = Z’%—l (@13 — a:n) (@33 — aq3) + Ta (bm - b:n) (b:;z - bzs) —_

1
- hyao (b:w. — by + @y — _Um)

The fixed-sign configurations of the form (3.2) are expressed by the
inequalities

4, >0, Ay — 42 >0 (3.3)

The inequalities (3.3), according to (2.15), establish the coupling between
the initial moment of momentum, h3°, and the initial perturbation, hi’ and by

the selected parameters ki, m, and n,.

We shall consider h, as small as desired and find the limits on h3°. It
is assumed that

my;=m, kizk, n;=n, d'L:d (‘=1’2I3) |

Omitting the terms containing h h h 1’ and h

. , in Equation (2.15), we
obtain 11 12 3 2

3

@y = bgyy, Gy = bgsy Gy = — b1z,  @gz = — by



This, on the basis of Equation (3.3), leads to
A= 4,>0, Ap=0 ! (3.4)

After computations, we obtain

b 2k
c—1<m - (3.5)

It is assumed that all three flywheels do not rotate relative to the solid
being subjected to stabilization in the stationary motion being studied, i.e.,

6o =0,  h*=Co (3.6)

Then from equation (3.5) it follows that

2%k C — 1)‘/'

o< (775
Coefficients of the form V° and Fl’ as can be easily seen, have the property

that the fixed-sign configurations of the forms are not disrupted with an in-
crease of k if in this case a corresponding increase of d is achieved (by
means of decreasing n). Thus, the found control ensures the stabilization

of the rotating motion of a solid for a wide (theoretically as large as desired)
range of angular velocities, w; furthermore, this is easier to achieve the
greater C - I as compared to C3, i.,e., the greater the extension of the solid

along the axis of rotation. In practice, the selection of d is limited by
the capacity of the engine, hence a specific upper boundary is obtained for
w. It may be seen from Equation (3.5) that the range of permissible w may
be expanded by means of decreasing h3° selecting G3° not equal to zero, and

having a sign opposite to C,w.

3

The minimized functional assumes in the independent variables a simple form /18

g [: (g + ¢2%) -+ b5 4 a (V2 +0%) 4 n (v + v v + .. 1] dt |
0 i
Here S ’ T ' T ‘
d (2k 4 mlw?) 2k

— st o ee——— vy 2 — ——
ELAT o’ by=d’n—7
4% — inflPqd ( l— Gy
Zn (@ (4 4 Dfer) = 1>

bl = d®n

The dotted lines designate the terms of a higher order of smallness (taking
into account the smallness of the initial perturbations, hi)'

By means of the scheme proposed for stabilization, it may be seen from the
formulas presented that the easier the stabilization of the rotation of the
solid, the smaller its angular velocity. At the same time it is known that
the greater the initial moment of momentum of the gyrostat [11] (in particular,

10



a gyroscope), the more stable the latter in the sense of Lyapunov. However,
a fast rotating gyroscope, being more stable in the usual sense than a slower
rotating gyroscope, is 'lazier": it is difficult to displace the faster gyro-
scope from the initial position. wurthermore, it is more difficult to return
it to its original position. In other words a faster rotating gyroscope is
more difficult to make asymptotically stable than a slower rotating gyroscope.
This simple mechanical fact provides the explanation for the results obtained.

It may also be established that with increasing w, the region of permissible
initial perturbations, hi’ decreases (and the opposite is also true).

Rotating space objects in some cases become unstable [12]. The results
obtained may prove to be useful in an investigation of techniques for stabi-
lizing these objects.
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